If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=(X^2+2500)/(2X)
We move all terms to the left:
100-((X^2+2500)/(2X))=0
Domain of the equation: 2X)!=0We multiply all the terms by the denominator
X!=0/1
X!=0
X∈R
-((X^2+2500)+100*2X)=0
We calculate terms in parentheses: -((X^2+2500)+100*2X), so:We get rid of parentheses
(X^2+2500)+100*2X
Wy multiply elements
(X^2+2500)+200X
We get rid of parentheses
X^2+200X+2500
Back to the equation:
-(X^2+200X+2500)
-X^2-200X-2500=0
We add all the numbers together, and all the variables
-1X^2-200X-2500=0
a = -1; b = -200; c = -2500;
Δ = b2-4ac
Δ = -2002-4·(-1)·(-2500)
Δ = 30000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{30000}=\sqrt{10000*3}=\sqrt{10000}*\sqrt{3}=100\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-100\sqrt{3}}{2*-1}=\frac{200-100\sqrt{3}}{-2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+100\sqrt{3}}{2*-1}=\frac{200+100\sqrt{3}}{-2} $
| x^2-17=-8 | | 2(x+5)^2-3=29 | | 36x+36=180 | | -5w-8=-2(w+1) | | 4 = p3 | | 3(3x+-4)=15+45 | | 2.5x-8=3.6x-5.8 | | 3y–-3=18 | | 4x2+12x+8=0 | | 5(7x+7)=315 | | x^2-x15-84=0 | | 7b+4b-33=2+5b+7 | | 1/2x-10=60 | | 4x2-12x=0 | | (1+5)(2+6x)=25-2.5(x+3) | | 3s–8=1 | | f–7=7 | | 9x-47+8x+23=180 | | 10x-14=5x | | 2x-5-1x=4x+14 | | -3(4x+6)=-78 | | -6x+2=7x-63 | | 3(16+.10x)=33+.35x | | 23=5y+7 | | -7x-4=-9x+2 | | 14=-3p+23 | | -23=5y | | 3*x/7=0,42 | | 3(1x+3)=21 | | (6x-1)^2=21 | | 28=-p | | 2(n–4)=-3n+12 |